Feeds:
Posts
Comments

Archive for the ‘Health’ Category

Clever sillies: Why high IQ people tend to be deficient in common sense

Bruce G. Charlton

Medical Hypotheses. 2009;73: 867-870.

Summary

In previous editorials I have written about the absent-minded and socially-inept ‘nutty professor’ stereotype in science, and the phenomenon of ‘psychological neoteny’ whereby intelligent modern people (including scientists) decline to grow-up and instead remain in a state of perpetual novelty-seeking adolescence. These can be seen as specific examples of the general phenomenon of ‘clever sillies’ whereby intelligent people with high levels of technical ability are seen (by the majority of the rest of the population) as having foolish ideas and behaviours outside the realm of their professional expertise. In short, it has often been observed that high IQ types are lacking in ‘common sense’ – and especially when it comes to dealing with other human beings. General intelligence is not just a cognitive ability; it is also a cognitive disposition. So, the greater cognitive abilities of higher IQ tend also to be accompanied by a distinctive high IQ personality type including the trait of ‘Openness to experience’, ‘enlightened’ or progressive left-wing political values, and atheism. Drawing on the ideas of Kanazawa, my suggested explanation for this association between intelligence and personality is that an increasing relative level of IQ brings with it a tendency differentially to over-use general intelligence in problem-solving, and to over-ride those instinctive and spontaneous forms of evolved behaviour which could be termed common sense. Preferential use of abstract analysis is often useful when dealing with the many evolutionary novelties to be found in modernizing societies; but is not usually useful for dealing with social and psychological problems for which humans have evolved ‘domain-specific’ adaptive behaviours. And since evolved common sense usually produces the right answers in the social domain; this implies that, when it comes to solving social problems, the most intelligent people are more likely than those of average intelligence to have novel but silly ideas, and therefore to believe and behave maladaptively. I further suggest that this random silliness of the most intelligent people may be amplified to generate systematic wrongness when intellectuals are in addition ‘advertising’ their own high intelligence in the evolutionarily novel context of a modern IQ meritocracy. The cognitively-stratified context of communicating almost-exclusively with others of similar intelligence, generates opinions and behaviours among the highest IQ people which are not just lacking in common sense but perversely wrong. Hence the phenomenon of ‘political correctness’ (PC); whereby false and foolish ideas have come to dominate, and moralistically be enforced upon, the ruling elites of whole nations.

***

IQ and evolved problem-solving

On the whole, and all else being equal, in modern societies the higher a person’s general intelligence (as measured by the intelligence quotient or IQ), the better will be life for that person; since higher intelligence leads (among other benefits) to higher social status and salary, longer life expectancy and better health [1], [2], [3], [4] and [5]. However, at the same time, it has been recognized for more than a century that increasing IQ is biologically-maladaptive because there is an inverse relationship between IQ and fertility [6], [7] and [8]. Under modern conditions, therefore, high intelligence is fitness-reducing.

In the course of exploring this modern divergence between social-adaptation and biological-adaptation, Satoshi Kanazawa has made the insightful observation that a high level of general intelligence is mainly useful in dealing with life problems which are an evolutionary novelty. By contrast, performance in solving problems which were a normal part of human life in the ancestral hunter–gatherer era may not be helped (or may indeed be hindered) by higher IQ [9] and [10].

(This statement requires a qualification. When a person has suffered some form of brain damage, or a pathology affecting brain function, then this might well produce generalized impairment of cognition: reducing both general intelligence and other forms of evolved cognitive functioning, depending on the site and extent of the brain pathology. Since a population with low IQ would include some whose IQ had been lowered by brain pathology, the average level of social intelligence or common sense would probably also be lower in this population. This confounding effect of brain pathology would be expected to create a weak and non-causal statistical correlation between IQ and social intelligence/common sense, a correlation that would mainly be apparent at low levels of IQ.)

As examples of how IQ may help with evolutionary novelties, it has been abundantly-demonstrated that increasing measures of IQ are strongly and positively correlated with a wide range of abilities which require abstract reasoning and rapid learning of new knowledge and skills; such as educational outcomes, and abilities at most complex modern jobs [1], [2], [3], [4], [5] and [11]. Science and mathematics are classic examples of problem-solving activities that arose only recently in human evolutionary history and in which differential ability is very strongly predicted by relative general intelligence [12].

However, there are also many human tasks which our human ancestors did encounter repeatedly and over manifold generations, and natural selection has often produced ‘instinctive’, spontaneous ways of dealing with these. Since humans are social primates, one major such category is social problems, which have to do with understanding, predicting and manipulating the behaviours of other human beings [13], [14], [15] and [16]. Being able to behave adaptively in dealing with these basic human situations is what I will term having ‘common sense’.

Kanazawa’s idea is that there is therefore a contrast between recurring, mainly social problems which affected fitness for our ancestors and for which all normal humans have evolved behavioural responses; and problems which are an evolutionary novelty but which have a major impact on individual functioning in the context of modern societies [9] and [10]. When a problem is an evolutionary novelty, individual differences in general intelligence make a big difference to each individual’s abilities to analyze the problem, and learn to how solve it. So, the idea is that having a high IQ would predict a better ability in understanding and dealing with new problems; but higher IQ would not increase the level of a person’s common sense ability to deal with social situations.

IQ not just an ability, but also a disposition

Although general intelligence is usually conceptualized as differences in cognitive ability, IQ is not just about ability but also has personality implications [17].

For example, in some populations there is a positive correlation between IQ and the personality trait of Openness to experience (‘Openness’) [18] and [19]; a positive correlation with ‘enlightened’ or progressive values of a broadly socialist and libertarian type [20]; and a negative correlation with religiousness [21].

So, the greater cognitive ability of higher IQ is also accompanied by a somewhat distinctive high IQ personality type. My suggested explanation for this association is that an increasing level of IQ brings with it an increased tendency to use general intelligence in problem-solving; i.e. to over-ride those instinctive and spontaneous forms of evolved behaviour which could be termed common sense.

The over-use of abstract reasoning may be most obvious in the social domain, where normal humans are richly equipped with evolved psychological mechanisms both for here-and-now interactions (e.g. rapidly reading emotions from facial expression, gesture and posture, and speech intonation) and for ‘strategic’ modelling of social interactions to understand predict and manipulate the behaviour of others [16]. Social strategies deploy inferred knowledge about the dispositions, motivations and intentions of others. When the most intelligent people over-ride the social intelligence systems and apply generic, abstract and systematic reasoning of the kind which is enhanced among higher IQ people, they are ignoring an ‘expert system’ in favour of a non-expert system.

In suggesting that the most intelligent people tend to use IQ to over-ride common sense I am unsure of the extent to which this is due to a deficit in the social reasoning ability, perhaps due to a trade-off between cognitive abilities – as suggested by Baron-Cohen’s conceptualization of Asperger’s syndrome, including the male- versus female-type of systematizing/empathizing brain [22]. Or alternatively it could be more of an habitual tendency to over-use abstract analysis, that might (in principle) be overcome by effort or with training. Observing the apparent universality of ‘Silly Clevers’ in modernizing societies, I suspect that a higher IQ bias towards over-utilizing abstract reasoning would probably turn-out to be innate and relatively stable.

Indeed, I suggest that higher levels of the personality trait of Openness in higher IQ people may the flip-side of this over-use of abstraction. I regard Openness as the result of deploying abstract analysis for social problems to yield unstable and unpredictable results, when innate social intelligence would tend to yield predictable and stable results. This might plausibly underlie the tendency of the most intelligent people in modernizing societies to hold ‘left-wing’ political views [10] and [20].

I would argue that neophilia (or novelty-seeking) is a driving attribute of the personality trait of Openness; and a disposition common in adolescents and immature adults who display what I have termed ‘psychological neoteny’ [23] and [24]. When problems are analyzed using common sense ‘instincts’ the evaluative process would be expected to lead to the same answers in all normal humans, and these answers are likely to be stable over time. But when higher IQ people ignore or over-ride common sense, they generate a variety of uncommon ideas. Since these ideas are only feebly-, or wholly un-, supported by emotions; they are held more weakly than common sense ideas, and so are more likely to change over time.

For instance, a group of less intelligent people using instinctive social intelligence to analyze a social situation will presumably reach the same traditional conclusion as everyone else and this conclusion will not change with time; while a more intelligent group might by contrast use abstract analysis and generate a wider range of novel and less-compelling solutions. This behaviour appears as if motivated by novelty-seeking.

Applying abstract analysis to social situations might be seen as ‘creative’, and indeed Openness has been put forward as the major personality trait which supports creativity [19] and [25]. This is reasonable in the sense that an intellectual high in Openness would be likely to disregard common sense, and to generate multiple, unpredictable and unfamiliar answers to evolutionarily-familiar problems which would only yield a single ‘obvious’ solution to those who deployed evolved modes of intelligence. However, I would instead argue that a high IQ person applying abstract systemizing intelligence to activities which are more usually done by instinctive intelligence is not a truly ‘creative’ process.

Instead, following Eysenck, I would regard true psychological creativity as primarily an associative activity which Eysenck includes as part of the trait Psychoticism; cognitively akin to the ‘primary process’ thinking of sleep, delirium and psychotic illness [26] and [27]. A major difference between these two concepts of creativity is that while ‘Openness creativity’ is abstract, coolly-impartial and as if driven by novelty-seeking (neophilia); ‘Psychoticism creativity’ is validated by emotions: such that the high-Psychoticism creative person is guided by their emotional responses to their own creative production.

Clever sillies in the IQ meritocracy

It therefore seems plausible that the folklore or stereotypical idea of the eccentric, unworldly, absent-minded or obtuse scientist – who is brilliant at their job while being fatuous and incompetent in terms of their everyday life [28], might be the result of this psychological tendency to over-use abstract intelligence and use it in inappropriate situations.

However, there is a further aspect of this phenomenon. Modern societies are characterized by large population, extensive division of labour, and a ‘meritocratic’ form of social organization in which social roles (jobs, occupations) tend to be filled on the basis of educational credentials and job performance rather than on an hereditary basis (as was the case in most societies of the past). This means that in modern societies there is an unprecedented degree of cognitive stratification [29]. Cognitive stratification is the layering of social organization by IQ; such that residence, schooling and occupations are characterized by narrow bands of intelligence. Large modern countries are therefore ruled by concentrations of highly intelligent people in the major social systems such as politics, civil administration, law, science and technology, the mass media and education. Communication in these elites is almost-exclusively among the highly intelligent.

In such an evolutionarily-unprecedented, artificial ‘hothouse’ environment, it is plausible that any IQ-related behaviours are amplified: partly because there is little counter-pressure from the less intelligent people with less neophiliac personalities, and perhaps mainly because there is a great deal of IQ-advertisement. Indeed, it looks very much as if the elites of modern societies are characterized by considerable IQ-signalling [19]. Sometimes this is direct advertisement (e.g. when boasting about intellectual attainments or attendance at highly-selective colleges) and more often the signalling is subtly-indirect when people display the attitudes, beliefs, fashions, manners and hobbies associated with high intelligence. This advertising is probably based on sexual selection [30], if IQ has been a measure of general fitness during human evolutionary history, and was associated with a wide range of adaptive traits [31].

My hunch is that it is this kind of IQ-advertisement which has led to the most intelligent people in modern societies having ideas about social phenomena that are not just randomly incorrect (due to inappropriately misapplying abstract analysis) but are systematically wrong. I am talking of the phenomenon known as political correctness (PC) in which foolish and false ideas have become moralistically-enforced among the ruling intellectual elite. And these ideas have invaded academic, political and social discourse. Because while the stereotypical nutty professor in the hard sciences is a brilliant scientist but silly about everything else; the stereotypical nutty professor social scientist or humanities professor is not just silly about ‘everything else’, but also silly in their professional work.

Getting answers to problems relating to hard science is extremely intellectually-difficult and (because the subject is an evolutionary novelty) necessarily requires abstract reasoning [12] and [26]. Therefore the hard scientist is invariably vastly more competent at their science than the average member of the public, and he has no need to be novelty-seeking in order to advertise his intelligence.

But getting answers to problems in science involving human social behaviour is something which is already done very well by evolved human psychological mechanisms [13], [14], [15] and [16]. In this situation it is difficult to improve on common sense, and – even without being taught – normal people already have a pretty good understanding of human motivations, incentives and deterrents, and the basic cause and effect processes of society. Because psychological and social intelligence expertise is so widespread and adaptive; in order to advertise his intelligence the social scientist must produce something systematically-different from common sense, something novel and (necessarily) counter-intuitive. And because it goes against evolved psychology, in this instance something different is likely to be something wrong. So, the social scientist professional deploying abstract reasoning on social problems is often less likely to generate a correct answer than the average member of the public who is using the common sense of evolved, spontaneous social intelligence.

In the human and social sciences there is therefore a professional incentive to be perversely wrong – to be silly, in other words. And this is indeed what we see. The more that the subject matter of an academic field requires, or depends on, common sense; the sillier it will be.

The results of cognitive stratification and IQ-advertising are therefore bad enough to have destroyed the value of whole domains of the arts and academia, and in the domain of public policy the results have been simply disastrous. Over the past four decades the dishonest fantasy-world discourse of non-biological political correctness has evolved to dominate the intellectual arena of whole nations – perhaps the whole developed world – such that wrong and ridiculous ideas have become not just mainstream, but compulsory.

Because clever silliness is not just one of several competing ideas in the elite arena – it is both intellectually- and moralistically-enforced with such zeal as utterly to exclude alternatives [32]. The first level of defence is that denying a PC assertion is taken as proof of dumbness or derangement; such that flat-denial without refutation is regarded as sufficient response. But the toughest enforcement is moral: anyone smart and sane who disbelieves the silly clever falsehoods and asserts something different is not just denounced as dumb but actually pilloried as evil [33].

I infer that the motivation behind the moralizing venom of political correctness is the fact that spontaneous human instincts are universal and more powerfully-felt than the absurd abstractions of PC; plus the fact that common sense is basically correct while PC is perversely wrong. Hence, at all costs a fair debate must be prevented if the PC consensus is to be protected. Common sense requires to be stigmatized in order that it is neutralized.

Ultimately these manoeuvres serve to defend the power, status and distinctiveness of the intellectual elite [34]. They are socially-adaptive over the short-term, even as they are biologically-maladaptive over the longer-term.

Conclusion

Because evolved ‘common sense’ usually produces the right answers in the social domain, yet the most intelligent people have personalities which over-use abstract analysis in the social domain [9] and [10], this implies that the most intelligent people are predisposed to have silly ideas and to behave maladaptively when it comes to solving social problems.

Ever since the development of cognitive stratification in modernizing societies [29], the clever sillies have been almost monopolistically ‘in charge’. They really are both clever and silly – but the cleverness is abstract while the silliness is focused on the psychological and social domains. Consequently, the fatal flaw of modern ruling elites lies in their lack of common sense – especially the misinterpretations of human psychology and socio-political affairs. My guess is that this lack of common sense is intrinsic and incorrigible – and perhaps biologically-linked with the evolution of high intelligence and the rise of modernity [35].

Stanovich has also described the over-riding of the ‘Darwinian brain’ of autonomous systems by the analytic system, and has identified the phenomenon as underlying modern non-adaptive ethical reasoning [36]. Stanovich has also noted that IQ accounts for much (but not all) of the inter-individual differences in using analytic evaluations; however, Stanovich regards the increased use of abstraction to replace traditional ‘common sense’ very positively, not as ‘silly’ but as a vital aspect of what he interprets as the higher status of modern social morality.

Yet, whatever else, to be a clever silly is a somewhat tragic state; because it entails being cognitively-trapped by compulsive abstraction; unable to engage directly and spontaneously with what most humans have traditionally regarded as psycho-social reality; disbarred from the common experience of humankind and instead cut-adrift on the surface of a glittering but shallow ocean of novelties: none of which can ever truly convince or satisfy. It is to be alienated from the world; and to find no stable meaning of life that is solidly underpinned by emotional conviction [37]. Little wonder, perhaps, that clever sillies usually choose sub-replacement reproduction [6].

To term the Western ruling elite ‘clever sillies’ is of course a broad generalization, but is not merely name-calling. Because, as well as political correctness being systematically dishonest [33] and [34]; in relation to absolute and differential fertility, modern elite behaviour is objectively maladaptive in a strictly biological sense. It remains to be seen whether the genetic self-annihilation of the IQ elite will lead-on towards self-annihilation of the societies over which they rule.

Note: I should in all honesty point-out that I recognize this phenomenon from the inside. In other words, I myself am a prime example of a ‘clever silly’; having spent much of adolescence and early adult life passively absorbing high-IQ-elite-approved, ingenious-but-daft ideas that later needed, painfully, to be dismantled. I have eventually been forced to acknowledge that when it comes to the psycho-social domain, the commonsense verdict of the majority of ordinary people throughout history is much more likely to be accurate than the latest fashionably-brilliant insight of the ruling elite. So, this article has been written on the assumption, eminently-challengeable, that although I have nearly-always been wrong in the past – I now am right….

References

[1] U. Neisser et al., Intelligence: knowns and unknowns, Am Psychol 51 (1996), pp. 77–101.

[2] N.J. Mackintosh, IQ and human intelligence, Oxford University Press (1998).

[3] A.R. Jensen, The g factor the science of mental ability, Praeger, Westport, CT, USA (1988).

[4] I.J. Deary, Intelligence: a very short introduction, Oxford, Oxford University Press (2001).

[5] G.D. Batty, I.J. Deary and L.S. Gottfredson, Pre-morbid (early life) IQ and later mortality risk: systematic review, Ann Epidemiol 17 (2007), pp. 278–288.

[6] R. Lynn, Dysgenics, Praeger, Westport, CT, USA (1996).

[7] R. Lynn and M. Van Court, New evidence for dysgenic fertility for intelligence in the United States, Intelligence 32 (2004), pp. 193–201.

[8] D. Nettle and T.V. Pollet, Natural selection on male wealth in humans, Am Nat 172 (2008), pp. 658–666.

[9] S. Kanazawa, General Intelligence as a domain-specific adaptation, Psychol Rev 111 (2004), pp. 512–523.

[10] S. Kanazawa, IQ and the values of nations, J Biosoc Sci 41 (2009), pp. 537–556.

[11] L.S. Gottfredson, Implications of cognitive differences for schooling within diverse societies. In: C.L. Frisby and C.R. Reynolds, Editors, Comprehensive handbook of multicultural school psychology, Wiley, New York (2005), pp. 517–554.

[12] D. Lubinski and C.P. Benbow, Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math-science expertise, Perspect Psychol Sci 1 (2006), pp. 316–345.

[13] N.K. Humphrey, The social function of intellect. In: P.P.G. Bateson and R.A. Hinde, Editors, Growing points in ethology, Cambridge University Press, Cambridge, UK (1976).

[14] In: R.W. Byrne and A. Whiten, Editors, Machiavellian intelligence social expertise and the evolution of intellect in monkeys, apes and humans, Clarendon Press, Oxford (1988).

[15] L. Brothers, The social brain: a project for integrating primate behavior and neurophysiology in a new domain, Concept Neurosci 1 (1990), pp. 27–51.

[16] B.G. Charlton, Theory of mind delusions and bizarre delusions in an evolutionary perspective: psychiatry and the social brain. In: Martin Brune, Hedda Ribbert and Wulf Schiefenhovel, Editors, The social brain – evolution and pathology, John Wiley & Sons, Chichester (2003), pp. 315–338.

[17] Charlton BG. Why it is ‘better’ to be reliable but dumb than smart but slapdash: are intelligence (IQ) and conscientiousness best regarded as gifts or virtues? Med Hypotheses; in press, doi:10.1016/j.mehy.2009.06.048.

[18] D. Nettle, Personality: what makes you the way you are, Oxford University Press, Oxford, UK (2007).

[19] G. Miller, Spent: sex, evolution and consumer behaviour, Viking, New York (2009).

[20] I.J. Deary, G.D. Batty and C.R. Gale, Bright children become enlightened adults, Psychol Sci 19 (2008), pp. 1–6.

[21] R. Lynn, J. Harvey and H. Nyborg, Average intelligence predicts atheism rates across 137 nations, Intelligence 37 (2009), pp. 11–15.

[22] S. Baron-Cohen, The essential difference: men, women and the extreme male brain, Penguin/Basic Books, London (2003).

[23] B.G. Charlton, The rise of the boy-genius: psychological neoteny, science and modern life, Med Hypotheses 67 (2006), pp. 679–681.

[24] B.G. Charlton, Psychological neoteny and higher education: associations with delayed parenthood, Med Hypotheses 69 (2007), pp. 237–240.

[25] Penke L. Creativity: theories, prediction, and etiology. Diploma thesis. Department of Psychology, University of Bielefeld, Germany ; 2003 [accessed 3.08.09].

[26] H.J. Eysenck, Genius: the natural history of creativity, Cambridge University Press, Cambridge, UK (1995).

[27] B.G. Charlton, Why are modern scientists so dull? How science selects for perseverance and sociability at the expense of intelligence and creativity, Med Hypotheses 72 (2009), pp. 237–243.

[28] B.G. Charlton, From nutty professor to buddy love: personality types in modern science, Med Hypotheses 8 (2007), pp. 243–244.

[29] R.J. Herrnstein and C. Murray, The bell curve: intelligence and class structure in American life, New York, Forbes (1994).

[30] G. Miller, The mating mind: how sexual choice shaped the evolution of human nature, Heinemann, London (2000).

[31] A. Pierce, G.F. Miller, R. Arden and L. Gottfredson, Why is intelligence correlated with semen quality? Biochemical pathways common to sperm and neurons, and the evolutionary genetics of general fitness, Commun Integr Biol 2 (2009), pp. 1–3.

[32] B.G. Charlton, Pioneering studies of IQ by G.H. Thomson and J.F. Duff – an example of established knowledge subsequently ‘hidden in plain sight’, Med Hypotheses 71 (2008), pp. 625–628.

[33] B.G. Charlton, First a hero of science and now a martyr to science: the James Watson Affair – political correctness crushes free scientific communication, Med Hypotheses 70 (2008), pp. 1077–1080.

[34] B.G. Charlton, Replacing education with psychometrics: how learning about IQ almost-completely changed my mind about education, Med Hypotheses 73 (2009), pp. 273–277.

[35] G. Clark, A Farewell to Alms: a brief economic history of the world, Princeton University Press, Princeton, NJ, USA (2007).

[36] K.E. Stanovitch, The robot’s rebellion: finding meaning in the age of Darwin, University of Chicago Press, Chicago (2004).

[37] B.G. Charlton, Alienation, recovered animism and altered states of consciousness, Med Hypotheses 68 (2007), pp. 727–731.

 

source: http://medicalhypotheses.blogspot.com

Advertisements

Read Full Post »

A bone-repairing nanoparticle paste has been developed that promises faster repair of fractures and breakages. DNA containing two growth-factor genes is encapsulated inside synthetic calcium-phosphate nanoparticles. These genes can enter cells and induce the synthesis of proteins that are able to accelerate bone growth.

The treatment of bone loss or fracture – after trauma, surgery or tumour extractions, for instance – represents a major challenge in clinical medicine. Matthias Epple at the University of Duisburg-Essen, Germany, who leads the team that developed the new bone paste, explains that ‘alternatives, such as bone from donors and synthetic calcium phosphate, suffer from infection problems, poor mechanical stability or inadequate resorption to form new bone.’ The team’s approach combines the bone-forming action of calcium phosphate – the principal component of bone – at the site of injection with further stimulation of bone growth in the surrounding tissue.

Toothpasteand-Syringe_300px

 

Genes for two growth factors are encapsulated within the nanoparticles: bone morphogenetic protein 7 (BMP-7), which stimulates bone-forming cells, and vascular endothelial growth factor (VEGF), which induces the growth of blood vessels for bone-cell nutrition. Following injection, the nanoparticles are taken up by the surrounding cells, where the acidic conditions of the lysosomes dissolves the calcium phosphate and releases the DNA. These transfected cells then produce the growth factors that accelerate bone growth and reduce the amount of time a patient is immobile. Epple expects a long-lasting stimulatory effect that will aid growth over the months and years required for bones to heal fully, preventing the need for multiple injections.

Michael Hofmann, who works on bone cements and drug delivery at the University of Birmingham, UK, remarks: ‘The bioresorbable paste would be replaced quickly by newly formed bone, so effectively you would have a vanishing implant. In a population where an increasing number of people have impaired bone-growth abilities – for instance, the elderly – the findings have tremendous potential for accelerating the regrowth of any bone loss or fracture in orthopaedic and dental applications.’

Epple’s team plan to extend their work on calcium-phosphate nanoparticles to target specific cell types by attaching antibodies to the nanoparticle surface.

Source : http://www.rsc.org/chemistryworld/2013/02/dna-functionalised-bone-paste-material

Read Full Post »

air pollution

What is air pollution?

‘That may seem like a question that doesn’t really need to be asked. Surely, everyone already knows the answer. Air pollution is, well, wait now . . . OK, what is air pollution, exactly?

Ask most people “what is air pollution?” and they will answer “smog” (another word for ground-level ozone), the smelly stuff that turns the air brown or grey and hovers over urban centers like Los Angeles, Mexico City and Beijing. But air pollution comes in many forms, and may include a number of different pollutants and toxins in various combinations.

What Constitutes Air Pollution?
The two most widespread types of air pollution are the aforementioned ozone (smog) and particle pollution (soot), but air pollution also may include serious pollutants such as carbon monoxide, lead, nitrogen dioxide and sulfur dioxide, and toxins such as mercury, arsenic, benzene, formaldehyde and acid gases.

The specific composition of air pollution in a particular location depends primarily on the source, or sources, of the pollution. Automobile exhaust, coal-fired power plants, industrial factories and other pollution sources all spew different types of pollutants and toxins into the air.

Smog is grimy and dirty. Smelly and foul. It is smog, and it is more dangerous than it seems. Smog is a combination word derived from ‘smoke’ and ‘fog’. However, smog is much more that that.

One of the primary components of smog is ground-level ozone. While ozone in the stratosphere protects life on Earth from excess harmful UV radiation, ozone on the ground is hazardous. Photochemical smog (or just smog for short) is a term used to describe air pollution that is a result of the interaction of sunlight with certain chemicals in the atmosphere. Ground-level ozone is formed when vehicle emissions containing nitrogen oxides (primarily from vehicle exhaust) and volatile organic compounds (from paints, solvents, and fuel evaporation) interact in the presence of sunlight.
The excess amount of ozone that forms can lead to Alert Days issued for public heath. In addition, numerous medical conditions, such as asthma, are exacerbated by smog.

What is Smog?

What we typically call smog today is a mixture of air pollutants—nitrogen oxides and volatile organic compounds—that combine with sunlight to form ozone.

Ozone can be beneficial or harmful, good or bad, depending on its location. Ozone in the stratosphere, high above the Earth, acts as a barrier that protects human health and the environment from excessive amounts of solar radiation. On the other hand, ground-level ozone, trapped near the ground by heat inversions or other weather conditions, is what causes the respiratory distress and burning eyes associated with smog.

What Causes Smog?
Smog is produced by a set of complex photochemical reactions involving volatile organic compounds (VOCs), nitrogen oxides and sunlight, which form ground-level ozone.

Smog-forming pollutants come from many sources such as automobile exhaust, power plants, factories and many consumer products, including paint, hairspray, charcoal starter fluid, chemical solvents, and even plastic popcorn packaging. In typical urban areas, at least half of the smog precursors come from cars, buses, trucks, and boats.

Major smog occurrences often are linked to heavy motor vehicle traffic, high temperatures, sunshine, and calm winds. Weather and geography affect the location and severity of smog. Because temperature regulates the length of time it takes for smog to form, smog can occur more quickly and be more severe on a hot, sunny day.

When temperature inversions occur (that is, when warm air stays near the ground instead of rising) and the wind is calm, smog may remain trapped over a city for days. As traffic and other sources add more pollutants to the air, the smog gets worse. Ironically, smog is often more severe farther away from the sources of pollution, because the chemical reactions that cause smog take place in the atmosphere while pollutants are drifting on the wind.

What are the Effects of Smog?

Smog is made up of a combination of air pollutants that can compromise human health, harm the environment, and even cause property damage.

Smog can cause or aggravate health problems such as asthma, emphysema, chronic bronchitis and other respiratory problems as well as eye irritation and reduced resistance to colds and lung infections.

The ozone in smog also inhibits plant growth and can cause widespread damage to crops and forests.

Who is Most at Risk from Smog?

Anyone who engages in strenuous outdoor activity—from jogging to manual labor—may suffer smog-related health effects. Physical activity causes people to breathe faster and more deeply, exposing their lungs to more ozone and other pollutants. Four groups of people are particularly sensitive to ozone and other air pollutants in smog:

Children—Active children run the highest risks from exposure to smog. Children spend a lot of time playing outside, especially during summer vacation from school when smog is most likely to be a problem. As a group, children are also more prone to asthma—the most common chronic disease for children—and other respiratory ailments than adults.

Adults who are active outdoors—Healthy adults of any age who exercise or work outdoors are considered at higher risk from smog than people who spend more time indoors, because they have a higher level of exposure.

People with respiratory diseases—There is no medical evidence that the ozone in smog causes asthma or other chronic respiratory diseases, but people who live with such diseases are more sensitive and vulnerable to the effects of ozone. Typically, they will experience adverse effects sooner and at lower levels of exposure than those who are less sensitive.

People with unusual susceptibility to ozone—Some otherwise healthy people are simply more sensitive to ozone and other pollutants in smog than other people, and may experience more adverse health effects from exposure to smog than the average person.

Elderly people are often warned to stay indoors on heavy smog days. According to the most recent medical evidence, elderly people are not at increased risk of adverse health effects from smog because of their age. Like any other adults, however, elderly people will be at higher risk from exposure to smog if they suffer from respiratory diseases, are active outdoors, or are unusually susceptible to ozone.

How Can You Recognize or Detect Smog Where You Live?
Generally speaking, you will know smog when you see it. Smog is a visible form of air pollution that often appears as a thick haze. Look toward the horizon during daylight hours, and you can see how much smog is in the air.

In addition, most cities now measure the concentration of pollutants in the air and provide public reports—often published in newspapers and broadcast on local radio and television stations—when smog reaches potentially unsafe levels.

The U.S. Environmental Protection Agency (EPA) has developed the Air Quality Index (AQI) (formerly known as the Pollutant Standards Index) for reporting concentrations of ground-level ozone and other common air pollutants.

Air quality is measured by a nationwide monitoring system that records concentrations of ground-level ozone and several other air pollutants at more than a thousand locations across the United States. The EPA then interprets that data according to the standard AQI index, which ranges from zero to 500. The higher the AQI value for a specific pollutant, the greater the danger to public health and the environment.

Hazardous substances that include:

Particulate matter (PM) – These tiny particles of soot, ash, liquids cause a smoky haze in the air and contribute to heart disease and respiratory illnesses. Potentially more damaging than large particles are the fine particles of 2.5 micrometers or smaller that can be inhaled deep into the lungs. Particulate matter is considered one of six criteria pollutants under the National Ambient Air Quality Standards (NAAQS), as mandated by the Clean Air Act.

Sulfur oxides (SOx) – Sulfur dioxide (SO2) is among the oxides of sulfur linked with asthma and other respiratory illnesses. SOx are considered one of six criteria pollutants under the National Ambient Air Quality Standards (NAAQS), as mandated by the Clean Air Act.

Nitrogen oxides (NOx) – Nitrogen dioxide (NO2) is one of the oxides of nitrogen linked with elevated levels of asthma, emphysema, bronchitis, and heart disease. NOx are considered one of six criteria pollutants under the National Ambient Air Quality Standards (NAAQS), as mandated by the Clean Air Act.

Lead (Pb) – Lead contributes to neurological (brain) and renal (kidney) disorders. Lead is considered one of six criteria pollutants under the National Ambient Air Quality Standards (NAAQS), as mandated by the Clean Air Act.

Mercury (Hg) – Elemental mercury released in coal combustion can convert to a variety of hazardous mercury compounds and species. Mercury in various forms contributes to neurological (brain) disorders in developing children and adults. Because coal-fired boilers emit 48 tons of mercury annually in the U.S., the EPA has proposed pollutant standards for power plants.

Vapor-phase hydrocarbons (such as methane, alkanes, alkenes, benzenes, etc.)

Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (known as dioxins and furans)

Hydrogen chloride gas (HCl)

Hydrogen fluoride gas (HF)

Source taken from: http://environment.about.com, http://energy.about.com

Read Full Post »

African Americans with heart disease who practiced Transcendental Meditation regularly were 48 percent less likely to have aheart attack, stroke or die from all causes compared with African Americans who attended a health education class over more than five years, according to new research published in the American Heart Association journal Circulation: Cardiovascular Quality and Outcomes.

Those practicing meditation also lowered their blood pressure and reported less stressand anger. And the more regularly patients meditated, the greater their survival, said researchers who conducted the study at the Medical College of Wisconsin in Milwaukee.

“We hypothesized that reducing stress by managing the mind-body connection would help improve rates of this epidemic disease,” said Robert Schneider, M.D., lead researcher and director of the Institute for Natural Medicine and Prevention in Fairfield, Iowa. “It appears that Transcendental Meditation is a technique that turns on the body’s own pharmacy – to repair and maintain itself.”

For the study, researchers randomly assigned 201 people to participate in a Transcendental Meditation stress-reducing program or a health education class about lifestyle modification for diet and exercise.

  • Forty-two percent of the participants were women, average age 59, and half reported earning less than $10,000 per year.
  • Average body mass index was about 32, which is clinically obese.
  • Nearly 60 percent in both treatment groups took cholesterol-lowering drugs; 41 percent of the meditation group and 31 percent of the health education group took aspirin; and 38 percent of the meditation group and 43 percent of the health education group smoked.

Those in the meditation program sat with eyes closed for about 20 minutes twice a day practicing the technique, allowing their minds and bodies to rest deeply while remaining alert.

Participants in the health education group were advised, under the instruction of professional health educators, to spend at least 20 minutes a day at home practicing heart-healthy behaviors such as exercise, healthy meal preparation and nonspecific relaxation.

Researchers evaluated participants at the start of the study, at three months and every six months thereafter for body mass index, diet, program adherence, blood pressure and cardiovascular hospitalizations. They found:

  • There were 52 primary end point events. Of these, 20 events occurred in the meditation group and 32 in the health education group.
  • Blood pressure was reduced by 5 mm Hg and anger decreased significantly among Transcendental Meditation participants compared to controls.
  • Both groups showed beneficial changes in exercise and alcohol consumption, and the meditation group showed a trend towards reduced smoking. Although, there were no significant differences between the groups in weight, exercise or diet.
  • Regular meditation was correlated with reduced death, heart attack and stroke.

Cardiovascular disease is the leading cause of death worldwide. Death from heart disease is about 50 percent higher in black adults compared to whites in the United States. Researchers focused on African Americans because of health disparities in America.

“Transcendental Meditation may reduce heart disease risks for both healthy people and those with diagnosed heart conditions,” said Schneider, who is also dean of Maharishi College of Perfect Health in Fairfield, Iowa.

“The research on Transcendental Meditation and cardiovascular disease is established well enough that physicians may safely and routinely prescribe stress reduction for their patients with this easy to implement, standardized and practical program,” he said.

Source : medicalnewstoday.com

Read Full Post »

Environmental Protection Agency Administrator Lisa P. Jackson today announced the agency’s decision to move forward with the development of a regulation for perchlorate to protect Americans from any potential health impacts, while also continuing to take steps to ensure the quality of the water they drink. The decision to undertake a first-ever national standard for perchlorate reverses a decision made by the previous administration and comes after Administrator Jackson ordered EPA scientists to undertake a thorough review of the emerging science of perchlorate. Perchlorate is both a naturally occurring and man-made chemical, and scientific research indicates that it may impact the normal function of the thyroid, which produces important developmental hormones. Thyroid hormones are critical to the normal development and growth of fetuses, infants and children. Based on this potential concern, EPA will move forward with proposing a formal rule. This process will include receiving input from key stakeholders as well as submitting any formal rule to a public comment process.

In a separate action, the agency is also moving towards establishing a drinking water standard to address a group of up to 16 toxic chemicals that may pose risks to human health. As part of the Drinking Water Strategy laid out by Administrator Jackson in 2010, EPA committed to addressing contaminants as a group rather than one at a time so that enhancement of drinking water protection can be achieved cost effectively. Today’s action delivers on the promise to strengthen public health protection from contaminants in drinking water.

“Clean water is critical to the health and prosperity of every American community and a fundamental concern to every American family. EPA is hard at work on innovative ways to improve protections for the water we drink and give to our children, and the development of these improved standards is an important step forward,” said EPA Administrator Lisa P. Jackson. “Our decisions are based on extensive review of the best available science and the health needs of the American people.”

Action on Perchlorate:

Scientific research indicates that perchlorate may disrupt the thyroid’s ability to produce hormones that are critical to developing fetuses and infants. Monitoring data show more than 4 percent of public water systems have detected perchlorate and between 5 million and 17 million people may be served drinking water containing perchlorate. The science that has led to this decision has been peer reviewed by independent scientists and public health experts including the National Academy of Sciences. Perchlorate is both a naturally-occurring and man-made chemical that is used in the manufacture of rocket fuel, fireworks, flares and explosives, and may be present in bleach and in some fertilizers. This decision reverses a 2008 preliminary determination by the previous administration, and considers input from almost 39,000 public comments.

Perchlorate is both a naturally occurring and man-made chemical that is used to produce rocket fuel, fireworks, flares and explosives. Perchlorate can also be present in bleach and in some fertilizers. Perchlorate may have adverse health effects because scientific research indicates that this contaminant can disrupt the thyroid’s ability to produce hormones needed for normal growth and development.

EPA is developing a proposed national primary drinking water regulation for perchlorate. EPA is committed to using the best available peer reviewed science and data to develop the perchlorate drinking water regulation. EPA is evaluating the available science on perchlorate health effects and exposure. EPA is also evaluating laboratory methods for measuring and treatment technologies for removing perchlorate in drinking water. The Agency is also evaluating costs and benefits of potential regulatory options for perchlorate.

EPA will continue to evaluate the science on perchlorate health effects and occurrence in public water systems. The agency will also now begin to evaluate the feasibility and affordability of treatment technologies to remove perchlorate and will examine the costs and benefits of potential standards.

Action on Drinking Water Strategy:

EPA will also be developing one regulation covering up to 16 chemicals that may cause cancer. This group of volatile organic compounds (VOCs), which are chemicals such as industrial solvents, includes trichloroethylene (TCE) and tetrachloroethylene (PCE) as well as other regulated and some unregulated contaminants that are discharged from industrial operations. The VOC standard will be developed as part of EPA’s new strategy for drinking water, announced by the administrator in March 2010. A key principle of the strategy is to address contaminants as groups rather than individually in order to provide public health protections more quickly and also allow utilities to more effectively and efficiently plan for improvements.

Additional Information about the Four Drinking Water Strategy Goals

Goal 1. Address contaminants as groups rather than one at a time so that enhancement of drinking water protection can be achieved cost-effectively.

The Agency announced in February 2011 that it plans to develop one national primary drinking water regulation (NPDWR) covering up to 16 carcinogenic volatile organic compounds (cVOCs).   Tetrachloroethylene (PCE) and trichloroethylene (TCE), which the Agency determined were candidates for regulatory revision under the second six year review of the existing NPDWRs, will be included in the cVOC drinking water standard. EPA will propose a regulation to address cVOCs as a group rather than individually in order to provide public health protections more quickly and also allow utilities to more effectively and efficiently plan for improvements. In the near-term, EPA also will evaluate how best to address nitrosamine disinfection byproducts since data from the second Unregulated Contaminant Monitoring Rule indicate that these compounds are being found in public water systems. In the long-term, the various offices within EPA we will continue to work together to evaluate and fill the data gaps for other groups of interest for drinking water.

Goal 2. Foster development of new drinking water technologies to address health risks posed by a broad array of contaminants.

EPA, in partnership with the US Small Business Administration (SBA), promoted the formation of a regional Water Technology Innovation Cluster in the Greater Cincinnati, Dayton, Northern Kentucky, and Southeast Indiana region that involves businesses, universities, and governments working together to promote economic growth and technology innovation. Emphasis has been placed on drinking water needs from early stages of cluster development; however, the scope also includes wastewater, storm water, and water reuse technologies because they increasingly impact each other. After a series of stakeholder meetings and the formation of a Steering Committee for the cluster, EPA Administrator Jackson visited Cincinnati on January 18, 2011, where she and the SBA Administrator announced the establishment of this regional cluster. As stated during the announcement, EPA is investing significant resources to conduct key studies of the environmental technology market place for drinking water. The cluster will develop, test, and market innovative processes and technologies including those that:

    • Are sustainable, and water and energy efficient
    • Will be cost effective for the utilities and consumers
    • Address a broad array of contaminants
    • Improve public health protection

Goal 3. Use the authority of multiple statutes to help protect drinking water.

EPA offices shared collected information and analyses conducted under the drinking water, pesticide, and toxics laws; identified authorities that will enable EPA to collect additional information on pesticides and toxic chemicals to inform analyses of potential health risks. OW and OCSPP jointly developed and released a table of non-cancer human health benchmarks for ~350 pesticides in April 2012. The table of Human Health Benchmarks for Pesticides (HHBPs) provides a tool for states, the public and other stakeholders to use for their internal decision-making processes (e.g., assist in interpreting drinking water monitoring data) when drinking water regulatory values or health advisories are not available.

In November 2010, OCSPP and OW worked together to identify a list of 134 chemicals being considered for screening for their potential to disrupt the endocrine system. Endocrine disruptors are chemicals that interact with and possibly disrupt the hormones produced or secreted by the human or animal endocrine system, which regulates growth, metabolism, and reproduction. The list includes chemicals that have been identified as  priorities under the Safe Drinking Water Act (SDWA) and also pesticide active ingredients that are being evaluated under EPA’s registration review program. The data generated from the screens will provide robust and systematic scientific information to help EPA identify whether additional testing is necessary, or whether other steps are necessary to address potential endocrine disrupting chemicals.

Goal 4. Partner with states to develop shared access to all public water systems (PWS) monitoring data.

In 2010, EPA, the Environmental Council of the States (ECOS), the Association of State Drinking Water Administrators (ASDWA), and the Association of State and Territorial Health Officials (ASTHO) established a Data Sharing Memorandum of Understanding (MOU) with the goals of:

(a) promoting advanced information technology to facilitate data sharing between states and EPA;

(b) strengthening the analysis of potential drinking water public health concerns;

(c) sharing powerful data analysis tools to target program oversight, compliance assistance, and enforcement; and,

(d) enabling consumers to obtain timely information about the quality of drinking water and the performance of public water systems in meeting drinking water standards.

In December 2010, to ensure that the data sharing goals of the MOU are achieved, a state-EPA work group was formed to focus on such issues as data requirements, characteristics of successful data exchange, uses of compliance monitoring data, and ways to provide easily accessible drinking water quality information to the public.  In 2011, in addition to continuing the work of the state-EPA workgroup, the Agency will begin to redesign the Safe Drinking Water Information System (SDWIS) in which the compliance monitoring data collected under the Drinking Water Strategy will be stored and made accessible to the public.

Source : epa.gov

Read Full Post »

Listening to Music Lights Up the Whole Brain

Finnish researchers have developed a groundbreaking new method that allows to study how the brain processes different aspects of music, such as rhythm, tonality and timbre (sound color) in a realistic listening situation. The study is pioneering in that it for the first time reveals how wide networks in the brain, including areas responsible for motor actions, emotions, and creativity, are activated during music listening. The new method helps us understand better the complex dynamics of brain networks and the way music affects us.

The study was published in the journal NeuroImage.
Using functional magnetic resonance imaging (fMRI), the research team, led by Dr. Vinoo Alluri from the University of Jyväskylä, Finland, recorded the brain responses of individuals who were listening to a piece of modern Argentinian tango. Subsequently, using sophisticated computer algorithms, they analyzed the musical content of the tango, showing how its rhythmic, tonal and timbral components evolve over time. This was the first time such a study has been carried out using real music instead of artificially constructed music-like sound stimuli. Comparison of the brain responses and the musical features revealed many interesting things.
The researchers found that music listening recruits not only the auditory areas of the brain, but also employs large-scale neural networks. For instance, they discovered that the processing of musical pulse recruits motor areas in the brain, supporting the idea that music and movement are closely intertwined. Limbic areas of the brain, known to be associated with emotions, were found to be involved in rhythm and tonality processing. Processing of timbre was associated with activations in the so-called default mode network, which is assumed to be associated with mind-wandering and creativity.
“Our results show for the first time how different musical features activate emotional, motor and creative areas of the brain,” says Prof. Petri Toiviainen from the University of Jyväskylä. “We believe that our method provides more reliable knowledge about music processing in the brain than the more conventional methods.”

Source : sciencedaily

Read Full Post »

Sodium Chloride Salt

Senior nutritionist Rose Carr reminds us that the problem with sodium chloride, or salt, is that while we need a little, we’re getting much more than is good for us.

Why is a high-salt diet so bad?

Many people are aware that a high-salt diet increases our risk for high blood pressure, leading to cardiovascular disease. Even if we currently consume a high-salt diet and have normal blood pressure, we shouldn’t be complacent: it’s been shown higher salt intakes early in life are associated with high blood pressure later in life.

Researchers from Otago University have recently shown the effect of salt on cardiovascular disease risk is from more than just its effect on blood pressure. They showed that salt was also implicated in hardening the arteries. The good news is that reducing salt intake does help to lower elevated blood pressure and improve the functioning of blood vessels. In addition to its cardiovascular effects, there is now strong evidence showing a link between high-salt diets and gastric cancer, osteoporosis, cataracts, kidney stones and diabetes. A high-salt diet may also encourage growth of the bacteria that causes stomach ulcers, Helicobacter pylori, and be linked with exercise-induced asthma.

How much?

Did you know? One tablespoon of standard soy sauce has over 1100mg of sodium, but salt-reduced soy sauce has less than half that.

It’s considered safe to consume up to 2300mg of sodium a day – the equivalent of one teaspoon of salt. But to reduce the risk of chronic disease the Ministry of Health suggests no more than 1600mg sodium each day – that’s about seven-tenths of a teaspoon. That’s a lot less than our estimated average consumption of around 3600mg each day – a little over one-and-a-half teaspoons of salt.

Where is it?

Around 75 to 85 per cent of our salt consumption is from processed foods, so even if you use salt sparingly in cooking or at the table you could have a high-sodium diet. That’s why it’s important to compare the nutrition labels on processed foods and go for lower-sodium options. Research has shown we don’t notice any taste difference with small reductions.

A 2005 published survey found bread was the largest contributor of sodium in our diets (accounting for up to 27 per cent), followed by processed meats (accounting for up to 14 per cent). Since that time, the National Heart  Foundation (NHF) has worked with bread manufacturers to reduce the amount of sodium in bread and approximately 150 tonnes of salt will be removed on an annual basis. The NHF is currently working with producers of processed meat to reduce the sodium in their products.

Source : healthyfood

Read Full Post »

Older Posts »